
4325 

(9) in quantitative yield. Ketone 9 is a white solid mp 101-102° 
(ir (CCl4) 3.40, 5.98, 6.26 /t; NMR (CCl4) methylene 5 2.00 
(doublet of doublets J = 2.5,10.0 Hz (1 H)), 1.86 (doublet J 
= 2.5 Hz (1 H)), 1.71 (doublet J = 2.2 (1 H)), 2.06 (doublet 
of doublets J = 2.2,10.0 Hz (1 H)), bridgehead 8 3.31 (singlet 
(2 H)), aromatic 5 7.26 (multiplet (8 H)), 7.88 (multiplet (2 
H)); m/e 248 M+, 233, 143, 128, 105 (base peak), 77. 

Irradiation of ketone 9 at 310 nm (0.01 M in terr-butyl al­
cohol) resulted in 100% conversion to 1,2-diphenyltricy-
clo[2.2.0.02'5]hexan-2-ol (4b). The photocyclization24 was 
complete after 10 min of irradiation. 

CPh [°]. CPh 

The tricyclic alcohol 4b was isolated as a pale yellow oil and 
was purified by preparative gas chromatography. Its structure 
is consistent with its spectral characteristics: ir (CCl4) 2.81, 
3.40 M; NMR (CCl4) methylene 8 2.23 (doublet J = 5.0 Hz 
(1 H)), 2.19 (doublet J = 5.0 Hz (1 H)), bridgehead 8 2.79 
(doublet J = 17.0 Hz (1 H)), 3.65 (doublet J = 17.0 Hz (1 
H)), 3.86 (singlet (1 H)), aromatic 8 7.20 (multiplet (10 H)), 
m/e 248 M+, 233, 230, 143, 128, 105 (base peak), 77. 

The tricyclohexanol 4b is found to be thermally stable below 
100 0C. When heated under vacuum to 160°, however, it 
undergoes rapid decomposition to a mixture of products the 
major of which has been identified as ketone 9. 

We are presently investigating the physical and chemical 
properties of the tricyclo[2.2.0.02'5]hexanol (4b). The general 
synthetic utility of mandelate ester photodecarboxylation is 
also being explored in our laboratory. 
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An Extraordinarily Facile Sulfoxide Automerization 

Sir: 

Perfluorotetramethyl(Dewar thiophene) (2)' is rapidly 
transformed by peroxytrifluoroacetic acid into a very sensitive 
and unusual compound (1). Careful sublimation of the crude 
product at room temperature (aspirator) gives colorless blocks, 
mp 31 -32°, with these spectral characteristics:2 ir (CH2CI2) 
1664 (w), 1410 (w), 1364 (m), 1188 (br, s) cirr1; 19FNMR 
(CH2Cl2) 8 18.17;2 ms 372 (parent). 

Although the new compound clearly has the composition 
of the anticipated sulfoxide la, its 19F NMR spectrum down 
to temperatures as low as —95° (where it remains a narrow 
singlet) is more easily accommodated by the highly symmet­
rical structure lb. Certainly that structure is unconventional, 

CF3 CF3 

la 

requiring as it does that sulfur play a role previously reserved 
for metals,3 but the opportunities for S-C bonding in such a 
C41, sulfur monoxide-cyclobutadiene complex are not bad.4 

The infrared and Raman spectra of la, of course, should 
each reveal only a single C=C stretching band, at the same 
frequency. While the C4,- structure lb should give rise to a 
single ring stretching fundamental (of E symmetry) in the 
infrared spectrum at > 1500 cm-1, two may be expected in this 
region of the Raman spectrum (B\, E). Since the E band 
should be weak,5 the major Raman feature should appear at 
a different frequency from the infrared absorption. In fact, a 
single band was found in the 1500-1800 cm-1 region of the 
Raman spectrum,6 identical in position and similar in shape 
to the infrared band.7 Hence la must be the correct structure, 
and the anomalous 19F spectrum must reflect the existence of 
a degenerate rearrangement facile enough to render all 12 
fluorines magnetically equivalent even at —95°. This surmise 
has now been confirmed by NMR measurements at still lower 
temperatures. Below —100° in Freon 21 the signal broadens 
rapidly and evolves into two resonances of equal area separated 
by 2.82 ppm at the slow exchange limit (Tc = -124 ± 3° 8). 
The free energy of activation for exchange at —124° is thus 6.8 
± 0.3 kcal/mol. 

The high reactivity of la is manifest in its rapid destruction 
at room temperature by such reagents as methanol, dimethyl 
sulfoxide, and furan. Reaction with the last yields a 1:1 adduct 
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Chart I 

CF3 CF3 CF; 
CF3 CF3 

exo-la 4 

(4), identical with the compound obtained when the furan 
adduct 3 of perfluorotetramethyl(Dewar thiophene)9 is oxi­
dized with peroxytrifluoroacetic acid (Chart I): mp 107.5— 
108.5° dec; ir (KBr) 1295 (s), 1261, 1182 (br,s), 1107, 1027, 
899, 818, 752, 733 cm ' 1 ; 19F NMR (CDCl3) 5 21.98, 19.24 
(br,s); 1H NMR (CDCl3) 5 7.12, 6.13 (unresolved m). Since 
the configuration of 3 has been determined by an x-ray study 
of a close analogue,9 and since approach to the endo face of the 
sulfur in 3 is sterically hindered, one can be confident that 4 
has the configuration shown. These experiments establish that 
the Dewar thiophene oxidation product has the exo configu­
ration. 

Remarkably, dissolution of 4 in dimethyl sulfoxide at room 
temperature results in fast elimination of the elements of sulfur 
monoxide to give the known tricyclic diene 5,10 sulfur dioxide, 
and dimethyl sulfide. Probably dimethyl sulfoxide attacks as 
a nucleophile at the electron-deficient sulfur of 4 to give a 
trigonal bipyramidal intermediate, 6a or 6b, whose demise 
proceeds (concertedly or stepwise) as indicated. 

The fluxional behavior of exo- la might be interpreted in 
terms of lb (or a rectangularly distorted lb), cast in the role 

CF3 CF3 

(CH:i)2SO ,. 

-O " £. 

SO2 + (CH3)2S 

CF3 CF3 

6b 

either of intermediate or transition state. Alternatively, one 
might invoke an automerization pathway of lower symmetry, 
namely, a sigmatropic change of order [1,3]: 

CF3 CF3 CF3 CF3 CF3 

/ 
CF3 

N S = 0 

etc. 

Such sigmatropic rearrangements are orbital symmetry for­
bidden to occur suprafacially with respect to the migrating 
center, and the transition state geometry for the allowed pro­
cess (antarafacial at sulfur) is very unfavorable.1' A diradical 
pathway appears to be out of the question, given the extremely 
low activation energy barrier.12 There is a fourth possible 
mechanism for the allylic shift, however; here the sulfur lone 
pair forms the new bond to carbon, and the electrons of the 
cleaving C-S bond become a new lone pair, as shown in 7. This 
pathway is appealing from a geometrical viewpoint, as models 
suggest that lone pair-ir overlap is significant even in the initial 
state.13 Like the allowed pericyclic rearrangement, this process 
inverts the sulfur, thus preserving the exo sulfoxide configu­
ration. 

Presently available evidence does not rule out a role for lb, 
but the proposed [l,3]sigmatropic pathway for automerization 
derives support from studies of other sulfoxides. Lauten-
schlaeger observed that hydrogen peroxide oxidation of 
vinylthiirane (8) at room temperature yielded directly 3-
thiolene 5-oxide (1O).14 By carrying out the oxidation with 

/~£s — [ATJS-o] 

8 

O 
o 
10 

peroxytrifluoroacetic acid, we have now found that the pre­
sumed thiirane oxide intermediate 9 is short-lived even at 
temperatures below —60°.15 Thus the 9—» 10 transformation, 
a nondegenerate counterpart of the automerization postulated 
for exo- la , is itself remarkably facile. The related oxidation 
of tricyclic thiirane 11 to rearranged sulfoxide 13 is also of 
interest, for it provides stereochemical information. Again the 

[O] 

S = O 

11 12 

reaction was discovered by Lautenschlaeger,14 who carried it 
out with periodate at 25°, obtained 13 directly, and assigned 
this thietane oxide the exo configuration. Low temperature 
oxidation with w-chloroperbenzoic acid allowed us to isolate 
and purify the intermediate thiirane oxide 12. Through the use 
of Eu(fod)3 the configuration at sulfur was shown to be exo.I6 

Presumably because rearrangement of 12 to 13 is homoallylic 
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and much less exothermic than the allylic analogue 9 —• 10, 
the former reaction is far slower (?i/255° = 0.5 h). Rear­
rangement of 12 was found to be stereospecific, and the exo 
configuration assigned to 13 was confirmed using Eu(fod)3. 
Although there is no assurance that exo- la and 12 react ac­
cording to the same mechanism, it is striking that the rear­
rangement stereochemistry demonstrated for 12 matches that 
postulated for exo- la.17 

We propose the name pseudopericyclic to describe the 
[l,3]sigmatropic pathway shown in 7. A pseudopericyclic 
reaction is a concerted transformation whose primary changes 
in bonding compass a cyclic array of atoms, at one {or more) 
of which nonbonding and bonding atomic orbitals interchange 
roles.18'19 In a crucial sense, the role interchange means a 
"disconnection" in the cyclic array of overlapping orbitals 
because the atomic orbitals switching functions are mutually 
orthogonal. Hence pseudopericyclic reactions cannot be orbital 
symmetry forbidden. The mechanistic idea described here is 
certainly not new, but we are unaware of a clear and general 
statement of this concept in the literature. Many apparently 
pseudopericyclic reactions are known.20 Prototropy in inter­
nally hydrogen bonded enols of /3-dicarbonyl compounds (eq 
1) is a prosaic example. As the proton tunnels between minima, 

(D 

lone pair and bonding orbitals formally interchange functions 
at both oxygens in the planar chelate ring.21"23 In olefin hy-
droboration (eq 2) the vacant boron orbital presumably 

Q 
H - B ; 

~r—Ln-

H ^ / 
\ / ^ ) 

, - C - C - -
/ \ 

(2) 

switches roles with the orbital employed in bonding to hydro­
gen. By this device a planar, four-center transition state, nor­
mally very high lying, becomes easily accessible.24 

Further studies of sulfoxide rearrangement mechanisms are 
in progress. 
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Novel Aromatic Systems. 6.1 The 
Bis(tetramethylhomocyclopropenyl) Dication 

Sir: 

In view of our current interest in the two TT electron ho-
moaromatic cyclobutenyl(homocyclopropenyl) cation I,2 we 
wish to report now the interesting and unexpected finding that 
the two electron oxidative ring opening reaction of the 
tetramethylcyclobutadiene dimer 23 in antimony pentafluo-
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